skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banchi, Leonardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When experimentally learning the action of a continuous-variable quantum process by probing it with inputs, there will often be some restriction on the input states used. One experimentally simple way to probe a quantum channel is to use low-energy coherent states. Learning a quantum channel in this way presents difficulties, due to the fact that two channels may act similarly on low-energy inputs but very differently for high-energy inputs. They may also act similarly on coherent-state inputs but differently on nonclassical inputs. Extrapolating the behavior of a channel for more general input states from its action on the far more limited set of low-energy coherent states is a case of out-of-distribution generalization. To be sure that such generalization gives meaningful results, one needs to relate error bounds for the training set to bounds that are valid for all inputs. We show that for any pair of channels that act sufficiently similarly on low-energy coherent-state inputs, one can bound how different the input-output relations are for any (high-energy or highly nonclassical) input. This proves that out-of-distribution generalization is always possible for learning quantum channels using low-energy coherent states, as long as enough samples are used. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026